CMOS Low Power Cell Library For Digital Design

نویسندگان

  • Kanika Kaur
  • Arti Noor
چکیده

Historically, VLSI designers have focused on increasing the speed and reducing the area of digital systems. However, the evolution of portable systems and advanced Deep Sub-Micron fabrication technologies have brought power dissipation as another critical design factor. Low power design reduces cooling cost and increases reliability especially for high density systems. Moreover, it reduces the weight and size of portable devices. The power dissipation in CMOS circuits consists of static and dynamic components. Since dynamic power is proportional to V 2 dd and static power is proportional to Vdd, lowering the supply voltage and device dimensions, the transistor threshold voltage also has to be scaled down to achieve the required performance. In case of static power, the power is consumed during the steady state condition i.e when there are no input/output transitions. Static power has two sources: DC power and Leakage power. Consecutively to facilitate voltage scaling without disturbing the performance, threshold voltage has to be minimized. Furthermore it leads to better noise margins and helps to avoid the hot carrier effects in short channel devices. In this paper we have been proposed the new CMOS library for the complex digital design using scaling the supply voltage and device dimensions and also suggest the methods to control the leakage current to obtain the minimum power dissipation at optimum value of supply voltage and transistor threshold. In this paper CMOS Cell library has been implemented using TSMC (0.18um) and TSMC (90nm) technology using HEP2 tool of IC designing from Mentor Graphics for various analysis and simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

An ultra low power wake-up signal decoder for wireless nodes activation in Internet of Things technology

  This paper proposes a new structure for digital address decoders based on flip-flops with application in wake-up signal generators of wireless networks nodes. Such nodes equipped with this device can be utilized in Internet of Things applications where the nodes are dependent on environment energy harvesting to survive for a long time. Different parts in these wireless nodes should have an e...

متن کامل

Low-Power Design Environment for MOSIS

The release of a CMOS low power library by the Infopad group at UC Berkeley gave engineers the ability to develop low power circuits with standard cells in Magic with minimum geometry layouts [1]. We describe a process that translates this low power standard cell library from Magic into the Mentor Graphics (MGC) environment. Using the Design Kit Example (DKE), we describe the steps to build a c...

متن کامل

Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts

In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.3017  شماره 

صفحات  -

تاریخ انتشار 2013